Enter your keyword

2-s2.0-85081139778

[vc_empty_space][vc_empty_space]

Rectangular Crash Boxes Implementation on Impact Energy Absorbing System for Lightweight Rail Vehicle Application

Masli R.a, Budiwantoro B.a, Santosa S.P.a, Gunawan L.a

a Institut Teknologi Bandung, Lightweight Structure Laboratory, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IEEE.As a form of transportation mode, railway vehicle must be able to protect passengers from fatalities while accidents occur. For that purpose, some parts of the vehicle are designed to dissipate impact energy and to guarantee passengers protection. This paper presents study on the performance improvement of impact energy absorbing system on light rail transit (LRT) by implementing an array of rectangular column crash boxes system. Numerical simulations were carried out with finite element method in order to evaluate response of the structures subjected to axial impact loads based on the International regulation, UIC/EN 15227. The crashworthiness performance of proposed design was then compared to those of the baseline system which used C-channel crash boxes. The systems performance indicators are the weight reduction and crashworthiness parameters. The simulations results showed that the proposed design is better since it is 42 kg lighter and from 5 crashworthiness parameters, 4 are improved.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]collision,Crash box,Crashworthiness parameters,International regulations,Light rail transit (LRT),Structural efficiencies,Systems performance,Transportation mode[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]collision,crashworthiness,light rail transit,rectangular crash boxes,structural efficiency[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This research was supported by the Ministry of Research, Technology, and Higher Education of The Republic of Indonesia under the research project “Aluminum Based Lightweight Superstructure Design for Bus Vehicle”. This paper is also supported by USAID (USA Agency for International Development) through Sustainable Higher Education Research Alliance (SHERA) Program – CCR NCSTT and Livermore Software Technology Corporation (LSTC) for providing the LS-DYNA academic license to the Lightweight Structure Laboratory, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Indonesia.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICEVT48285.2019.8994004[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]