Enter your keyword

2-s2.0-85081994053

[vc_empty_space][vc_empty_space]

Differentially Proximity-coupled Circular Ring-shaped Array Antenna with Improved Radiation Characteristic

Asthan R.S.a, Mistialustina H.b, Munir A.b

a Institut Teknologi Sumatera, Department of Electrical Engineering, Indonesia
b Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Informatics Institut Teknologi, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IEEE.One of important parameters in array antenna is radiation characteristic which can be satisfied by implementing several design techniques. In this paper, by utilizing differentially proximity-coupled feeding technique, a circular ring-shaped array antenna is designed with improved radiation pattern characteristics. The proposed array antenna consists of 20 circular ring-shaped antenna elements arranged in 4 \times 5 array. Differentially proximity-coupled feeding technique applied for each antenna element is aimed to have symmetrical radiation pattern. The array antenna which is designed to work at the frequency of 1.275 GHz for L-band frequency application is implemented using two layers of FR4 epoxy dielectric substrate with the total dimension of 199.3 mm \times 189.5 mm. The characterization result shows that the proposed array antenna has good impedance matching with the reflection coefficient (S-{11}) of -21.65 dB and -10 dB impedance bandwidth of 80 MHz (1.21 GHz to 1.29 GHz). Meanwhile, a symmetrical radiation pattern at E- plane is achieved with the half power beamwidth (HPBW) of 43°.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Design technique,Dielectric substrates,Half power beamwidth,Impedance bandwidths,L-band frequencies,Pattern characteristic,Proximity coupled,Radiation characteristics[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/PIERS-Spring46901.2019.9017290[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]