Enter your keyword

2-s2.0-85082019009

[vc_empty_space][vc_empty_space]

System Modeling and Its Effect on State Estimation in Unbalanced Low Voltage Networks in the Presence of Measurement Errors

Banjar-Nahor K.M.c, Cadoux F., Rauma K.b, Hariyanto N.c, Sinisuka N.c

a Univ. Grenoble Alpes, CNRS, Grenoble INP, G2Elab, Grenoble, 38000, France
b Institute of Energy Systems, Energy Efficiency and Energy Economics, TU Dortmund University, Dortmund, Germany
c School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IEEE.Nowadays, network operations, including in low voltage systems, are becoming more complex. There is a necessity to monitor the systems which could be realized using the data gathered by the smart meters. This monitoring task can be accomplished through state estimation analysis. It is hence necessary to study some factors that affect the state estimation analysis. In distribution system analysis, the unbalanced parameters of the feeders are mostly simplified with sequence networks. Shunt capacitances and grounding methods are commonly neglected. Furthermore, errors and uncertainty in measurements and power system parameters may exist. Such simplifications and imperfections are likely to affect the results of the analysis. This work covers the abovementioned issues and assesses their impact to estimation results. An AC state estimation algorithm was created in AMPL. Extensive simulations have uncovered some findings in order to obtain satisfactory state estimation in low voltage networks.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Distribution system analysis,Extensive simulations,Low voltage network,Low voltage systems,Low voltages,parameter,State estimation algorithms,Uncertainty in measurement[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]low voltage,modeling,parameter,state estimation[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICHVEPS47643.2019.9011118[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]