Enter your keyword

2-s2.0-85082439209

[vc_empty_space][vc_empty_space]

PLA-based 3D printed quad-ridged horn antenna for tomography application

Oktafiani F.a,b, Hamid E.Y.a, Munir A.a

a Institut Teknologi, Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Informatics, Bandung, Indonesia
b Research Center for Electronics and Telecommunication, Indonesian Institute of Sciences (LIPI), Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IEEE.In order to improve the accuracy of object detection tomography application requires a wideband antenna and dual polarization. A quad-ridged horn antenna is one of antenna types which have some characteristics satisfying the required specification. In this paper, the development of 3D printed quad-ridged horn antenna based on polylactid-acid (PLA) with metal conductive coating is proposed for tomography application. Some advantages of using 3D printing technology for the proposed antenna are light-weight, low-cost, and easy in fabrication. The ridge profile applied for the proposed antenna is a quadratic ridge which has been proven in bandwidth enhancement toward a lower operating frequency. It shows that the realized 3D printed QRHA has the weight lighter more than 65% compared to the computerized numerically controlled (CNC) based fabricated antenna. From the characterization result, the realized 3D printed QRHA yields the -10 dB working bandwidth in the frequency range of 3.5-11.4 GHz.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Bandwidth enhancement,Conductive coatings,Dual-polarizations,Frequency ranges,Operating frequency,Quad-ridged horn antennas,Tomography applications,Wideband antenna[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work is partially supported by the Ministry of Research, Technology, and Higher Education, The Republic of Indonesia under the SAINTEK 2018 project.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/PIERS-Fall48861.2019.9021386[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]