Enter your keyword

2-s2.0-85082492606

[vc_empty_space][vc_empty_space]

Crustal thickness beneath Mt. Merapi and Mt. Merbabu, Central Java, Indonesia, inferred from receiver function analysis

Suhardja S.K.a, Widiyantoro S.b,c, Metaxian J.-P., Rawlinson N., Ramdhan M.f, Budi-Santoso A.g

a University of Pertamina, Jakarta, 12220, Indonesia
b Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Bandung, 40132, Indonesia
c Faculty of Engineering, Maranatha Christian University Bandung, Bandung, 40164, Indonesia
d ISTerre, IRD R219, CNRS, Université de Savoie Mont Blanc, Le Bourget-du-Lac, France
e Department of Earth Sciences – Bullard Labs, University of Cambridge, Cambridge, CB30EZ, United Kingdom
f Agency for Meteorology, Climatology and Geophysics, Jakarta, Indonesia
g Center for Volcanology and Geological Hazard Mitigation, Geological Agency, Bandung, 40122, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 Elsevier B.V.In this study, we analysed 2708 receiver functions (RFs) using data recorded by 53 seismographic stations that surround Mt. Merapi and Mt. Merbabu – two volcanos in Central Java – to map the boundary between Earth’s crust and upper mantle. We observe that a number of RFs from this new dataset have complex signals and do not exhibit typical RF characteristics; in particular, where the converted Ps signal from the Moho discontinuity is the clearest and strongest amplitude arrival following the P onset. This effect may be related to complex shallow velocity structure due to the presence of magmatic rocks and sediments. Further analysis of the RF results using the H-κ method suggests that Moho depth varies between 27 and 32 km beneath the array, with no apparent correlation between crustal thickness and surface topography, as one might expect from Airy isostacy. For instance, the Moho is quite shallow beneath Mt. Merapi (up to 27 km depth), despite its elevation of nearly 3 km. This may be a consequence of dynamic support from an active upper mantle coupled with erosion and/or weakening of the lower crust due to the active volcanic plumbing system. To the north of Mt. Merapi, the Moho is deeper (30–31 km depth) below Mt. Merbabu. Vp/Vs ratio estimates from the H-κ method are relatively high (~1.9) beneath the Mt. Merapi and Kendeng Basin area, which may indicate the presence of a zone of hydrous and active partial melting in the underlying crust. Lower Vp/Vs ratios (~1.7) are found beneath Mt. Merbabu, which may be due to its relative lack of volcanic activity compared to Mt. Merapi.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Crustal thickness,Indonesia,Mt. Merapi,Receiver function analysis,Receiver functions,RF characteristics,Velocity structure,Volcanic activities[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Crustal Thickness,Indonesia,Mt. Merapi,Receiver Function[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][{‘$’: ‘We are grateful to the French National Research Agency and Institut de recherche pour le d?veloppemen for funding the DOMERAPI project. We would also like to express our gratitude to PVMBG as the main partner of the DOMERAPI project in Indonesia. This study was supported in part by Direktorat Perguruan Tinggi (DIKTI), the Republic of Indonesia, through a WCU research grant 2017/2018, and a 2018 research grant from Institut Teknologi Bandung (ITB) awarded to SW. We used the Generic Mapping Tools (Wessel and Smith, 1998) to create figures presented in this study.’}, {‘$’: ‘We are grateful to the French National Research Agency and Institut de recherche pour le développemen for funding the DOMERAPI project. We would also like to express our gratitude to PVMBG as the main partner of the DOMERAPI project in Indonesia. This study was supported in part by Direktorat Perguruan Tinggi ( DIKTI ), the Republic of Indonesia, through a WCU research grant 2017/2018 , and a 2018 research grant from Institut Teknologi Bandung (ITB) awarded to SW. We used the Generic Mapping Tools ( Wessel and Smith, 1998 ) to create figures presented in this study.’}][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.pepi.2020.106455[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]