[vc_empty_space][vc_empty_space]
XRD characterization of Fe3O4-ZnO nanocomposite material by the hydrothermal method
Siregar J.a,b, Sebayang K.a, Yuliarto B.c, Humaidi S.a
a Department of Physics, FMIPA, Universitas Sumatera Utara, Medan, 20155, Indonesia
b Alwashliyah Nusantara Muslim University, Kota Medan, Indonesia
c Department of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 Author(s).The synthesis of Fe3O4 – ZnO nanocomposite results is an interesting research currently which its application can be used in many ways such as gas sensor application. This research aimed to analyze the structure of magnetite (Fe3O4) – Zink Oxide (ZnO) nano composite through hydrothermal method. The procedures of Fe3O4 – ZnO nanocomposites synthesis started when Fe3O4 nanoparticles were decorated and added with ZnO. The proses of hydrothermal conducted at 180 °C for 12 hours then the synthesis results were cleaned by using water and etanol. The next step was calcined for 2 hours at 500°C and Fe3O4 – ZnO nanocomposites as the results. The sample of Fe3O4 – ZnO nanocomposites then characterized by X-ray diffractometer (XRD) and the pattern indicated the cubic structure index. The nanocomposites structure showed several peaks which were tapered up and the width narrowed. The results of XRD also described nanocomposite sample material has crystalline phase structure for 73.9% and of which 26.1% was amorphous.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was supported by the Advanced Functional Materials Laboratory (AFM) Department of Physics Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia and Research Center of Nanosciences and Nanotechnology, Institut Teknologi Bandung, Indonesia is gratefully acknowledged.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1063/5.0003210[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]