Enter your keyword

2-s2.0-85084031506

[vc_empty_space][vc_empty_space]

Abstractive Summarization using Genetic Semantic Graph for Indonesian News Articles

Devianti R.S.a, Khodra M.L.a

a School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IEEE.We propose an abstractive summarization model using genetic semantic graph for Indonesian news articles. The model is adapted from an abstractive summarization model for English news articles that employs genetic algorithm (GA) for feature weights. Three of seven components in this model are language dependent, so they have to be modified to be able to process Indonesian news articles. Predicate argument structure (PAS) extraction component is replaced with subject, verb, object, and adverbial (SVOA) extraction component. We also replace WordNet-based similarity measure in semantic similarity matrix component with cosine similarity algorithm based on word embedding. Lastly, abstractive summary generation component is replaced with heuristic rules. Experiments are held to obtain the best pretrained word embedding, mutation probability, and selection, crossover, and mutation algorithm in genetic algorithm (GA) for each type of summary, i.e. 100 words and 200 words. The evaluation shows that the proposed model has 0.320 and 0.394 average ROUGE-2 recall for 100 words and 200 words summary respectively.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Argument structures,Cosine similarity,Mutation algorithms,Mutation probability,Semantic similarity,Similarity measure,Summarization models,Summary generation[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]abstractive summarization,genetic algorithm,genetic semantic graph,PAS extraction[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICAICTA.2019.8904361[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]