[vc_empty_space][vc_empty_space]
Coreference Resolution System for Indonesian Text with Mention Pair Method and Singleton Exclusion using Convolutional Neural Network
Auliarachman T.a, Purwarianti A.a
a School of Electrical Engineering and Informatics, Bandung Institute of Technology, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IEEE.Neural network has shown promising performance on coreference resolution systems that uses mention pair method. With deep neural network, it can learn hidden and deep relations between two mentions. However, there is no work on coreference resolution for Indonesian text that uses this learning technique. The state-of-The-Art system for Indonesian text only states the use of lexical and syntactic features can improve the existing coreference resolution system. In this paper, we propose a new coreference resolution system for Indonesian text with mention pair method that uses deep neural network to learn the relations of the two mentions. In addition to lexical and syntactic features, in order to learn the representation of the mentions’ words and context, we use word embeddings and feed them to Convolutional Neural Network (CNN). Furthermore, we do singleton exclusion using singleton classifier component to prevent singleton mentions enter any entity clusters at the end. Achieving 67.37% without singleton exclusion, 63.27% with trained singleton classifier, and 75.95% with gold singleton classifier on CoNLL average F1 score, our proposed system outperforms the state-of-The-Art system.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Co-reference resolutions,F1 scores,Learning techniques,State-of-the-art system,Syntactic features[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]convolutional neural network,coreference resolution,deep learning,natural language processing[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]ACKNOWLEDGEMENT This work is a part of “Intelligent System to Monitor Gadget Usage in Teenagers using Machine Learning Technique” research and funded by the Ministry of Research and Higher Education of Indonesia. We would also like to thank PT Antares Global Teknologi (Bahasa.ai) for the utilization of the word embedding that is used in this work.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICAICTA.2019.8904261[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]