Enter your keyword

2-s2.0-85084112522

[vc_empty_space][vc_empty_space]

Room-temperature ferromagnetism induced by Zn vacancy enhancement through ZnO nanostructure modification

Darma Y.a, Muhammady S.a, Widita R.a, Takase K.b

a Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
b Department of Physics, College of Sciences and Technology, Nihon University, Tokyo, 101-0062, Japan

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2010-2012 IEEE.Undoped ZnO nanostructures were deposited on Si (100) substrate using direct-current-unbalanced magnetron sputtering. The nanostructure modification of conelike into rod-shaped nanocolumnars is found after thermal annealing with O2. This modification transforms paramagnetism into room-temperature ferromagnetism, induced by Zn vacancy enhancement at the cost of O vacancies. First principles confirm that the ferromagnetism comes from O 2p holes due to Zn vacancies. Our result shows the crucial role of ZnO nanostructure modification in inducing ferromagnetism for novel functional device applications.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]First principles,Functional devices,Nanostructure modification,Room temperature ferromagnetism,Si (100) substrate,Thermal-annealing,Unbalanced magnetron sputtering,ZnO nanostructures[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]electronic structure,magnetic hysteresis,magnetic semiconductors,Magnetism in solids[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was supported in part by the Ministry of Research and Technology (MORT) / The National Agency for Research and Innovation (NARI) of the Republic of Indonesia 2020 and in part by ITB 2019 research programs. The work of S. Muhammady was supported by the Insentif In-house Postdoctoral Program 2020 of WCU-Institut Teknologi Bandung, Indonesia. The authors thank Dr. R. Kurniawan for discussions and technical works.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/LMAG.2020.2981281[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]