Enter your keyword

2-s2.0-85084116674

[vc_empty_space][vc_empty_space]

Electron correlation effects and magneto-optical properties of yttrium iron garnet

Nakashima H.a, Pradipto A.-M.a,b, Akiyama T.a, Ito T.a, Nakamura K.a

a Department of Physics Engineering, Mie University, Tsu, Mie, 514-8507, Japan
b Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 Author(s).The electronic structure, magnetic, optical and magneto-optical properties of yttrium iron garnet (YIG) were investigated by using first-principles calculations with Hubbard energy correction for the treatment of the strong electron correlation. The effective on-site Coulomb interaction parameters Ueff for YIG were determined from the constrained density functional theory within a linear response theory. Our results find a hybridization between the O-2p and Fe-3d orbitals. We also observe the crucial role of the electron correlation of the Fe-3d orbitals according to the magneto-optical properties of YIG.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Coulomb interaction parameters,Electron correlation effect,First-principles calculation,Hubbard energy,Linear-response theory,Magnetooptical properties,Optical and magneto-optical properties,Strong electron correlations[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]Work at Mie University was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Nos. 15H05702 and 16K05415, and the Cooperative Research Program of Network Joint Research Center for Materials and Devices. Computations were performed at the Research Institute for Information Technology, Kyushu University.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1063/1.5130147[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]