[vc_empty_space][vc_empty_space]
The strong 3-rainbow index of edge-amalgamation of some graphs
Awanis Z.Y.a, Salman A.a, Saputro S.W.a, Baca M.b, Semanicova-Fenovcikova A.b
a Combinatorial Mathematics Research Group, Institut Teknologi Bandung, Bandung, Indonesia
b Department of Applied Mathematics and Informatics, Technical University, Košice, Slovakia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© TUBITAK.Let G be a nontrivial, connected, and edge-colored graph of order n ≥ 3, where adjacent edges may be colored the same. Let k be an integer with 2 ≤ k ≤ n. A tree T in G is a rainbow tree if no two edges of T are colored the same. For S ⊆ V (G), the Steiner distance d(S) of S is the minimum size of a tree in G containing S. An edge-coloring of G is called a strong k-rainbow coloring if for every set S of k vertices of G there exists a rainbow tree of size d(S) in G containing S. The minimum number of colors needed in a strong k-rainbow coloring of G is called the strong k-rainbow index srxk(G) of G. In this paper, we study the strong 3-rainbow index of edge-amalgamation of graphs. We provide a sharp upper bound for the srx3 of edge-amalgamation of graphs. We also determine the srx3 of edge-amalgamation of some graphs.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Edge-amalgamation,Rainbow coloring,Rainbow tree,Strong k-rainbow index[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This research was supported by a research grant from the Ministry of Research, Technology, and Higher Education, Indonesia.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.3906/MAT-1911-49[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]