[vc_empty_space][vc_empty_space]
Kinetic estimation of solid state transition during isothermal and grinding processes among efavirenz polymorphs
Wardhana Y.W.a,b, Hardian A.a,c, Chaerunisa A.Y.b, Suendo V.a, Soewandhi S.N.a
a Department of Pharmaceutics, School of Pharmacy, Institute Technology of Bandung (ITB), Indonesia
b Department of Pharmaceutics and Pharmaceuticals Technology, Faculty of Pharmacy, Universitas Padjadjaran (UNPAD), Indonesia
c Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Jenderal Achmad Jani (UNJANI), Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 The Author(s)Efavirenz; Bimorphism; Rietveld refinement; Isothermal; Grinding; Kinetics study; Materials characterization; Materials chemistry; Materials processing; Materials structure; Physical chemistry; Pharmaceutical chemistry© 2020 The Author(s)Investigation into the solid-state transition among drug polymorphs has been more intense lately. Many factors induce the transformation of polymorphs during manufacturing processes. Efavirenz (EFV), an AIDS therapy drug, has more than 23 polymorphs, but very little information has been reported on them. This study aimed to perform a characterisation of EFV polymorph properties and to predict the kinetics and mechanism of the polymorphic transformation of EFV during manufacturing processes. The bimorphism study was conducted by Differential Scanning Calorimetry (DSC) thermal analysis. The phase transition kinetics of the polymorphs was monitored by X-ray powder diffraction and the quantification of concomitant polymorphs was examined using Rietveld refinement with MAUD ver. 2.7 as a software aid. To predict the solid-state transition, correlation coefficients of solid-state kinetic models were fitted to the experimental data. The results show that Form I and Form II of EFV were thermodynamically shown to be monotropy related. By fitting the experimental data, it was found that isothermal treatment had the best model fit with the phase boundary reaction in the two-dimensional model (G2). Accordingly, by employing mechanical treatment (grinding), it was predicted that the transition mechanism is a second-ordered reaction (R2). The activation energy of the transition during isothermal treatment calculated by the Arrhenius plot was found to be 23.051 kJ mol−1; the half-lif of Form II at ambient temperature was 428.05 min (~7.1 h).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Bimorphism,Efavirenz,Grinding,Isothermal,Kinetics study,Materials characterization,Materials chemistry,Materials processing,Materials structure,Pharmaceutical chemistry,Physical chemistry,Rietveld refinement[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors would like to acknowledge the supportive assistance from the School of Pharmacy, ITB and Faculty of Pharmacy, UNPAD. The authors are grateful for the collaborative efforts of Wisnu K.P. Jamelia A. Allin A.R.N. Fitria N, H. Hanifa N. Chrissel, Tazyinul Q.A. and Adelina K.R.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.heliyon.2020.e03876[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]