[vc_empty_space][vc_empty_space]
Least Recently Frequently Used Replacement Policy in Named Data Network
Syambas N.R.a, Situmorang H.a, Putra M.A.P.a
a Bandung Institute of Technology, School of Electrical Engineering and Informatics, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IEEE.Internet users growth in last few years rapidly increased, which affected the number of content variation that requested by users. Network performance takes an important aspect to provided the best performance while sending the content requested by users. Named Data Network (NDN) is a new improvement in Information-Centric Network (ICN). NDN gives a new paradigm into networking by enabling cache system in NDN router and using the name as a network address, instead of using an IP address. Router caching effectively improved the network performance due to the user instantly request the content into the nearest router that connected in same NDN network, instead of request the content directly to the producer. Caching policy in NDN router controlled by a replacement policy. In this paper, we implement LRFU algorithm as a new replacement policy in ndnSIM, then we compare LRFU replacement policy with LRU and Priority-FIFO replacement policy based on content store size, interest rate, and the size of grid topology variation. From the simulation result, we found that the LRFU replacement policy achieved 3.36% higher hit rate than LRU and 5.78% higher compared with Priority-FIFO replacement policy.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Caching policy,Content variation,Information Centric Networks,Interest rates,Internet users growth,Named data networks,Network address,Replacement policy[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]component,Content Store,LRFU,Named Data Network,Replacement Policy[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]Funded by U.S National Science Foundation (NSF), NDN becomes one of five research project under NSF future internet architecture program in 2010. NDN is an evolution of CCN, which started by Van Jacobson at Xerox. The NDN project code base originally comes from CCNx and forked to support NSF architecture in 2013 [8].[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICWT47785.2019.8978218[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]