[vc_empty_space][vc_empty_space]
Low Complexity MIMO-SCMA Detector
Kurniawan D.a,b, Arifianto M.S.a, Kurniawan A.a
a Bandung Institute of Technology, Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Informatics, Bandung, Indonesia
b Research Center for Electronics and Telecommunication, Indonesian Institute of Sciences, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IEEE.The implementation of Multiple Input Multiple Output (MIMO) on the Sparse Code Multiple Access (SCMA) can enhance performance in 5G future communication. Low complexity detector for the MIMO-SCMA system to achieve near-optimum bit error rate (BER) performance is still hot topic in this research field. This paper is investigate low complexity MIMO-SCMA detector by combining a joint factor graph (JFG) and sphere decoding (SD) algorithm based on message passing algorithm (MPA) called by SD-JFG-MPA. SD-JFG-MPA is combine n-th single factor graph become one virtual factor graph to deal with MIMO detector. SD algorithm is used to reduce high complexity of the JFG-MPA by calculating possible combination codeword within search radius RSD. SD-JFG-MPA is investigated under Rayleigh channel model with overloading factor 150%. The simulation result shows that complexity and BER performance is determined by a selected radius of SD-JFG-MPA. Optimum performance with less processing time for one bit error on single SCMA when RSD = √Eb × 3/2 × rmax meanwhile for 2×2 MIMO-SCMA when RSD = √Eb × Nmimo × rmax. 2×2 MIMO-SCMA performance is better with 5 dB gap at BER = 10-3 compared to single SCMA.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]BER performance,Bit error rate (BER) performance,Message passing algorithm,Multiple access,Optimum performance,Rayleigh channel,Research fields,Sphere decoding[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]joint factor graph,MIMO,MPA,SCMA,sphere decoding[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICWT47785.2019.8978244[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]