Enter your keyword

2-s2.0-85084955679

[vc_empty_space][vc_empty_space]

Health Index Analysis of Power Transformer with Incomplete Paper Condition Data

Prasojo R.A.a, Maulidevi N.U.a, Soedjarno B.A.a, Suwarno S.a

a Institut Teknologi Bandung, School of Electrical Engineering and Informatics, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IEEE.Transformer is a vital equipment in electrical power system that can degrade faster or slower than its designated life. In order to recognize the vulnerability of a transformer in a fleet, Health Index is commonly used. Conventional Health Index approach require all the data to be available in order to obtain accurate condition of a transformer. However, frequently incomplete data such as furfural is often faced by asset manager. This paper demonstrated the use of seven models to substitute unavailable furfural. Health Indices of 200 transformers with complete data were calculated, and compared to the alternative models. Multiple imputation approaches to predict paper condition of transformer using Multiple Linear Regression (MLR) and ANFIS (Adaptive Neuro-Fuzzy Inference System) had better agreement than other approaches shown by higher coefficient correlation with complete Health Index, as much as 0.959 and 0.960 respectively.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]ANFIS (adaptive neuro fuzzy inference system),Asset managers,Coefficient correlations,Electrical power system,Health indices,Incomplete data,Multiple imputation,Multiple linear regressions[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]ANFIS,DGA,Furan,Health Index,Oil Quality,Power Transformer[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]ACKNOWLEDGMENT This research was funded by Direktorat Riset dan[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/CATCON47128.2019.CN0073[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]