[vc_empty_space][vc_empty_space]
Prediction of high temperature behavior of geopolymer from solid wastes using gibbs energy minimization approach
Purbasari A.a, Samadhi T.W.b, Bindar Y.b
a Department of Chemical Engineering, Diponegoro University, Semarang, 50275, Indonesia
b Department of Chemical Engineering, Bandung Institute of Technology, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 School of Science, IHU.Geopolymer, alumino-silicate inorganic polymer, has the potential to substitute Portland cement because of its lower energy consumption and CO2 emissions, as well as its raw material can use solid wastes such as fly ash, slag, and biomass ash. Geopolymer as Portland cement substitute in addition to having good mechanical strength must also have resistance to high temperature exposure which can be predicted from its solidus and liquidus temperatures. Solidus temperature indicates the occurrence of melting when the solid is heated, while the liquidus temperature indicates the occurrence of precipitation when the liquid is cooled. Thus geopolymer having high solidus and liquidus temperatures demonstrates its resistance to high temperature exposure. In this paper, composition effect of raw material mixture (fly ash, slag, and biomass ash) on the solidus and liquidus temperatures of geopolymer had been studied using experimental design of 3-components mixture. Solidus and liquidus temperatures of geopolymer in each mixture composition were determined using Gibbs energy minimization approach by FactSage 6.3 software, while the effect of mixture composition on solidus and liquidus temperatures was determined statistically by Minitab 17 software. Phase changes were observed in temperature range of 100-2500 oC and simulation results showed that geopolymers had solidus temperatures of 500-972.4 oC and liquidus temperatures of 2146.1-2491.5 oC. Solidus and liquidus temperatures obtained in each simulation were treated statistically resulting linear regression model for solidus temperature and special cubic regression model for liquidus temperature. Fly ash component had the highest positive effect on both solidus and liquidus temperatures of geopolymer compared to slag and biomass ash components. Therefore, geopolymer product having high solidus and liquidus temperatures was obtained with composition of raw material mixture dominated by fly ash.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Gibbs energy minimization,High temperature behavior,High-temperature exposure,Linear regression models,Liquidus temperature,Mixture compositions,Raw material mixtures,Solidus temperature[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Experimental design of 3-components mixture,Geopolymer,Gibbs energy minimization approach,Liquidus temperature,Solid waste,Solidus temperature[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.25103/jestr.132.22[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]