Enter your keyword

2-s2.0-85085057344

[vc_empty_space][vc_empty_space]

Data Quality Measures and Data Cleaning for Pattern Analysis Angkot Transportation in Bandung City

Al Ghifari N.T.a, Setijadi Prihatmanto A.a, Wijaya R.b, Yusuf R.a

a Bandung Institute of Technology, Department of Electrical Engineering, Bandung, Indonesia
b Department of Computer Engineering, Faculty of Electrical Engineering, Telkom University, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 IEEE.Detecting and repairing ‘dirty’ data is one of the perennial challenges in data analytics, and failure to do so can result in inaccurate analytics and unreliable decisions. To detect errors at an early stage and handle them efficiently, it is necessary to determine steps for cleaning and improving data quality. The data used in this study are data collected from previous studies. Data is collected through two sources, namely the Angkot mobile application and the GPS tracker microcontroller module. Some data cleaning tasks here are performed for geospatial data types. This paper provides an overview of data cleaning problems, data quality, cleaning approaches and requirements for public transportation pattern analysis.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Data cleaning,Data quality,Data-quality measures,Geo-spatial data,Mobile applications,Pattern analysis,Public transportation,Two sources[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]data cleaning,data quality,pattern analysis,public transport[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICoSTA48221.2020.1570613756[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]