Enter your keyword

2-s2.0-85085178286

[vc_empty_space][vc_empty_space]

Hydrogen sulfide separation from biogas using laterite soil adsorbent

Adisasmito S.a, Rasrendra C.B.a, Alfadhli M.Q.a, Al Ghifary M.F.a

a Chemical Engineering Department, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 Trans Tech Publications Ltd, Switzerland.Biogas production contributes as an alternative renewable energy but its emissions contain sulphuric components which needs to be separated because it can cause damage to the environment. The method used in separation is adsorption with laterite soil because the price is cheap, easy to obtain, and can occur at room temperature. The purpose of this study is to determine the conditions of the adsorbent in the adsorption column which can provide a high adsorption capacity. The separation process is carried out by flowing biogas with a flow rate of 1.5 liters/minute to the adsorption column containing laterite soil. Reducing the particle size of the adsorbent from 6 mesh to 21 mesh will increase the adsorption capacity to 2.13 times, ie from 7.3 to 14.2 mg H2S/g adsorbent. The addition of bed height from 7 cm to 12 cm will increase the adsorption capacity from 6.7 to 7.9 mg H2S/g adsorbent at 6 mesh particle size. The addition of bed height from 7 cm to 12 cm will increase the adsorption capacity from 13.5 to 15.0 mg H2S/g adsorbent at 21 mesh particle size. The laterite soil adsorbent with a particle size of 21 mesh has the highest adsorption capacity of 15.0 mg H2S/g adsorbent.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Adsorption capacities,Adsorption columns,Biogas production,High adsorption capacity,Hydrogen sulfide separation,Laterite soils,Renewable energies,Separation process[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Adsorption,Biogas,H2S separation,Laterite adsorbent[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]