Enter your keyword

2-s2.0-85085239693

[vc_empty_space][vc_empty_space]

Basic design analysis of a heavy water-cooled thorium breeder reactor

Permana S.a

a Nuclear Physics and Bio Physics Research Division, Department of Nuclear Science and Engineering, Department of Physics, Bandung Institute of Technology, Gedung Fisika, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 Elsevier B.V.Core design evaluation of heavy water cooled thorium breeding reactor has been investigated based on optimum basic design criteria such as fuel breeding capability and negative void reactivity coefficient value by adopting triangular fuel lattice and hexagonal core arrangement. Core burnup calculation and some thermal hydraulic parameters have been analyzed to evaluate the reactor core performances and to confirm the feasible design region based on the optimum results. Core burnup evaluation has confirmed the feasibility of heavy water-cooled thorium breeder reactor with negative void reactivity. Three batches refueling scheme is employed for 23-month refueling period. This system shows the breeding condition at the end of cycle for average core burnup of 38 GWd/t and it always gives negative void reactivity coefficient during reactor operation. In relation to thermal hydraulic analysis, the system achieves the maximum linear heat rate of 18.2 kW/m, maximum fuel temperature of 1066 °C and friction pressure drop of 0.046 MPa. The reactor has large margins due to the limitation of thermal hydraulic design point of view and some comparable result with the conventional reactor based on the obtained thermal hydraulic properties.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Burnup calculation,Conventional reactors,Friction pressure drop,Maximum fuel temperatures,Thermal hydraulic parameters,Thermal-hydraulic analysis,Thermal-hydraulic designs,Void reactivity coefficient[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]And thermal hydraulic,Breeding,Core design,Negative void reactivity,Thorium,Water-cooled[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.nucengdes.2020.110689[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]