[vc_empty_space][vc_empty_space]
Neutronic Study of Small Modular Reactor Thorium Based as A Model of Nuclear Power Plant for Remote Area
Irfan M.a, Su’Ud Z.b, Irwanto D.b, Bura R.O.a
a Indonesia Defense University, Power Motion Technology, Faculty of Defense Technology, Bogor, Indonesia
b Physics Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 IEEE.Small Modular Reactor (SMR) is one of many types of nuclear reactors which is very suitable and prospective to be applied to solve the problem of power supply deficit in remote area, as in many regions in Indonesia. SPINNOR is a concept of 4th generation of nuclear power reactor as SMR and Liquid Metal Fast Breeder Reactor (LMFBR) which can operate for a long life, about more than 15 years, without on-site refuelling.In this study, we have been done neutronic study of the SPINNOR’s pin cell calculation with PIJ module and the core calculation with CITATION module which is both in SRAC (Standard Reactor Analysis Code). The SPINNOR has a constant power 300 MWt with Uranium233-Thorium Nitride (U233,Th)N as fuel, and it is expected that the reactor can operate for up to 20 years with maximum excess reactivity value < 2% Δk/k. Fuel region is distinguished the U233 composition as fissile material, i.e. 9.5% in central region, 10.25% in intermediate region, and 11% in peripheral region. Three parametric surveys were performed, among them are Neptunium-237 composition as burnable-poison 0 – 5%, fuel volume fraction 50% – 62.5%, and active core diameter 150-250 cm.After optimization, the optimum result is the design with 225 cm diameter, 46.8% fuel volume fraction, and 5% Neptunium-237 composition which has the maximum excess reactivity value around 0.7%.[/vc_column_text][vc_empty_space][vc_separator css=".vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}"][vc_empty_space][megatron_heading title="Author keywords" size="size-sm" text_align="text-left"][vc_column_text]Core calculations,Excess reactivity,Fissile materials,Neutronic studies,Nuclear power reactors,Parametric surveys,Peripheral regions,Small modular reactors[/vc_column_text][vc_empty_space][vc_separator css=".vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}"][vc_empty_space][megatron_heading title="Indexed keywords" size="size-sm" text_align="text-left"][vc_column_text]Maximum Excess Reactivity,Neutronic,Small Modular Reactor,SPINNOR,Thorium[/vc_column_text][vc_empty_space][vc_separator css=".vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}"][vc_empty_space][megatron_heading title="Funding details" size="size-sm" text_align="text-left"][vc_column_text]ACKNOWLEDGMENT This research supported by Nuclear Physics Laboratory – Bandung Institute of Technology, and Indonesia Defense University research and innovation grant 2018.[/vc_column_text][vc_empty_space][vc_separator css=".vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}"][vc_empty_space][megatron_heading title="DOI" size="size-sm" text_align="text-left"][vc_column_text]https://doi.org/10.1109/BICAME45512.2018.1570505679[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]