[vc_empty_space][vc_empty_space]
Numerical modeling of nanoparticles transport in porous media for optimisation in well stimulation and eor using electromagnetic heating
Santoso R.K.a, Rachmat S.a, Putra W.D.K.a, Resha A.H.a, Hartowo H.a
a Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2016 Society of Petroleum Engineers. All rights reserved.Electromagnetic heating has been recently introduced as an effective technology to enhance production of heavy and extra-heavy oil reservoir. Several investigations using metal oxide nanoparticles have successfully proven to increase the effectiveness of heating process. Nanoparticles act as thermal-conducting agent during the heating process. Thus, heat distribution along the reservoir strongly depends on the nanoparticles distribution (concentration profile along the reservoir). In this study, we develop a mathematical model to characterize the concentration distribution of nanoparticles along the reservoir during injection phase. The model is developed using material balance and fluid flow in porous media. Several empirical correlations are also adopted to describe the adsorption phenomenon during the nanoparticles flow in the reservoir. Using coreflood experiment data of iron oxide nanoparticles, the model is simulated and fitted to look for several constants and confirm the minimum error. From the simulation results, the model matched with tracer data and had small squared error with nanoparticles data.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Concentration distributions,Concentration profiles,Electromagnetic heating,Empirical correlations,Fluid flow in porous media,Iron oxide nanoparticle,Metal oxide nanoparticles,Transport in porous media[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.2118/182182-ms[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]