Enter your keyword

2-s2.0-85085553647

[vc_empty_space][vc_empty_space]

Natural Language Interface to Database (NLIDB) for Query with Temporal Aspect

Poetra D.A.a, Esterina Widagdo T.a, Azizah F.N.a

a Institut Teknologi Bandung, Magister of Informatics Study Program, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IEEE.NLIDB (Natural Language Interface to Database) was developed to simplify database access using natural language. In previous studies, NLIDB has been developed which can translate natural languages into several languages, including in Indonesian language. However, there are types of queries that cannot be handled by the system, one of them is a query with a temporal aspect. In this study, we propose a method of translating sentences in Indonesian language that have temporal aspects into SQL queries. The process of translating sentence is performed by identifying the input sentence and parsing the sentence into a parsed tree with PC- PATR as the syntax parser. The parsed tree is analyzed and mapped into parts of SQL. Then, an object search is performed to the ontology that is built from the database to get classes, attributes, operators, and values based on tokens in parts of SQL. Finally, the results of the previous process are organized into SQL queries. The NLIDB application built in this study was successful in translating imperative sentences with temporal aspects in Indonesian language into SQL queries for current state, time slice, sequenced and non-sequenced queries.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Database access,Indonesian languages,Natural language interface to database,Natural languages,SQL query,Temporal aspects,Time slice[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Databases,Natural language,NLIDB,Ontology,Parser,Temporal database[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICoDSE48700.2019.9092618[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]