Enter your keyword

2-s2.0-85085565421

[vc_empty_space][vc_empty_space]

Design Conceptual of 800MWt Long Life Pressurized Water Reactor Using (Th-U)O2 Fuels with Gd2O3 and Pa-231 as Burnable Poisons

Hariyanto D.a, Permana S.a

a Nuclear Physics and Biophysics Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 Published under licence by IOP Publishing Ltd.A long-life pressurized water reactor (PWR) has been reviewed as an innovative reactor design that can fulfill electricity demand. This study aimed to find out the optimum design of 800MWt long life PWR using Thorium-Uranium dioxide (Th-U)O2 fuels with Gadolinium (Gd2O3) and Protactinium-231 (Pa-231) as the burnable poisons. An established computer code of SRAC 2006 with JENDL 4.0 as data nuclear library had been used for the analysis. A two-dimensional R-Z geometry and fuel volume fraction of 40% were used for core geometry analysis. The different fraction of Uranium dioxide, Uranium-235, Gadolinium, and Protactinium-231 had been carried out. The result of this study was a design of PWR 800MWt using Uranium dioxide fuel of 60% with enrichment 11%-12%-13% Uranium-235 and the addition of 0,025% Gd2O3 and 1,0% Pa-231 that could operate for ten years without refueling. The reactor could produce a power density of 45,4 watts/cc with excess reactivity about 3,6% dk/k. This study is expected to be a reference for a long-life pressurized water reactor using the Thorium-Uranium fuel cycles.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Burnable poisons,Core geometries,Electricity demands,Excess reactivity,Optimum designs,Power densities,Reactor designs,Thorium-uranium fuel cycles[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The author would like to thank Mr. Rouf and Prof. Zaki Su’ud for discussions that have been conducted to complete this paper. The author would like to acknowledge to Decentralization Research Program of the Ministry of Research, Technology and Higher Education for the support and to Lembaga Pengelola Dana Pendidikan (LPDP) – Ministry of Finance, the Republic of Indonesia for supporting the first author by providing educational scholarships.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/1493/1/012006[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]