[vc_empty_space][vc_empty_space]
Comparison of Irradiation Effect of ThO2 and ThZrH on Neutronic Parameter of the TRIGA 2000 Reactor
Rasitoa,b, Permana S.a, Ilham P.a
a Nuclear Physics Laboratory, Physics Department, Bandung Institute of Technology, Bandung, Indonesia
b Center for Science and Applied Nuclear Technology, National Nuclear Energy Agency, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 Published under licence by IOP Publishing Ltd.The present work discusses two different models of thorium irradiation in the TRIGA 2000 reactor core to compare the neutronic characteristics of irradiation of thorium dioxide (ThO2) and thorium zirconium hydride (ThZrH). The Monte Carlo N-Particle (MCNP) Transport code, based on the Monte Carlo method, is used to design three dimensional models for TRIGA reactor core at typical operating power 2 MW. These models are used to determine the effective multiplication factor (keff) and neutron flux distribution. The ORIGEN code is used to calculate the 233U isotope production. It is found that decreasing of keff from the effect of hydride irradiation rod is a little lower than the oxide irradiation rod.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Effective multiplication factor,Irradiation effect,Isotope production,Monte carlo n particles,Neutron flux distributions,Operating power,Three-dimensional model,Zirconium hydride[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors gratefully acknowledge to the financial support given to this work from Menristekdikti, and from joint cooperation between National Nuclear Energy Agency (BATAN) and Bandung Institute of Technology (ITB).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/1493/1/012017[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]