[vc_empty_space][vc_empty_space]
BPS submodels of the generalized Skyrme model and how to find them
Atmaja A.N.a, Gunara B.E.b, Prasetyo I.a,c
a Research Center for Physics, Indonesian Institute of Sciences (LIPI), Kompleks PUSPIPTEK Serpong, Tangerang, 15310, Indonesia
b Theoretical High Energy Physics Research Division, Institut Teknologi Bandung, Bandung, 40132, Indonesia
c Departemen Fisika, FMIPA, Universitas Indonesia, Depok, 16424, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 The Author(s)Using the BPS Lagrangian method we show that all known BPS submodels of the generalized Skyrme model, with a particular ansatz for the fields content, can be divided into three groups based on the (effective) number of derivative-terms in the BPS submodels. We are able to derive rigorously the Bogomolny’s equations of those BPS submodels. The resulting Bogomolny’s equations, along with possible constraint equations, are in general forms in which some of the known BPS submodels may contain other possible non-trivial (non-vacuum) solutions then the ones found in the literature. Furthermore, we derive some other new BPS submodels of the generalized Skyrme model for each of the groups and some of them yield new solutions.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][{‘$’: ‘We would like to thank C. Adam for discussions. IP is grateful to Research Center for Physics-LIPI for financial support under the Research Assistant scheme. ANA and BEG acknowledge the Abdus Salam ICTP for Associateships 2019 and for warmest hospitality. The work of ANA and BEG is supported by PDUPT Kemenristek 2020 .’}, {‘$’: ‘We would like to thank C. Adam for discussions. IP is grateful to Research Center for Physics-LIPI for financial support under the Research Assistant scheme. ANA and BEG acknowledge the Abdus Salam ICTP for Associateships 2019 and for warmest hospitality. The work of ANA and BEG is supported by PDUPT Kemenristek 2020.’}][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.nuclphysb.2020.115062[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]