Enter your keyword

2-s2.0-85085863120

[vc_empty_space][vc_empty_space]

Radar Signal Processing in Parallel on GPU: Case Study Dual Polarization FMCW Weather Radar

Perdana R.S.a, Sitohang B.a, Suksmono A.B.a

a School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IEEE.Radar signal processing is currently done digitally with DSP (digital signal processor) or FPGA (field-programmable gate array) devices. Implementation of radar signal processing at the software level can provide high scalability, but existing research still has poor performance when implemented on the CPU. Meanwhile, the development of graphics processing unit (GPU) technology provides an opportunity to perform processing of radar signals with high performance as well as scaling. This paper focus on processing radar signals using GPUs with case studies of dual polarization FMCW (frequency-modulated continuous wave) weather radar signal processing. In this research has been done the implementation of weather radar signal processing algorithm on 2 platforms, which are serialized using CPU and in parallel using GPU. The results of performance measurements on both platforms show that GPU implementations deliver performance more than 2 times faster than implementations on the CPU.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Dual-polarizations,Fpga(field programmable gate array),Frequency-modulated continuous waves,GPU implementation,High scalabilities,Performance measurements,Poor performance,Radar signals[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]CUDA,graphics processing unit (GPU),parallel computing,radar,radar signal processing,weather radar[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]We would like to thank Satrio Adi Rukmono and Ricky Willyantho for their help in this research. We would also like to thank all members of the weather radar research team at ITB who have provided support to this research.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICEEI47359.2019.8988845[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]