[vc_empty_space][vc_empty_space]
Adaptive Control of Cyber-Physical Distillation Column using Data Driven Control Approach
Nahrendra I.M.A.a, Rusmin P.H.a, Hidayat E.M.I.a
a Electrical Engineering, Bandung Institute of Technology, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IEEE.In this paper, the authors implemented a technique in controlling a batch distillation column system by utilizing data driven control. The authors used the pre-existing mini batch distillation column which has been integrated into a Cyber-Physical System by the previous research. Then, some minor modification in the network structure were added to enable the implementation of data driven control. The data driven control itself consists of a machine learning with Recurrent Neural Network model to mimic the behavior of the physical system and a Mataheuristics-based PID tuner such as Genetic Algorithm and Particle Swarm Optimization to adjust the plant’s controller over time. The performance of the system was then compared with the conventional PID control scheme and also human in the loop control.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Batch distillation columns,Conventional pid,Data-driven control,Genetic algorithm and particle swarm optimizations,Human-in-the-loop control,Network structures,Physical systems,Recurrent neural network model[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cyber-Physical System,data driven control,distillation column,Genetic Algorithm,Metaheuristics,Particle Swarm Optimization,Recurrent Neural Network[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]ACKNOWLEDGMENT This work was supported by the facility grant from Honeywell Indonesia and financial support for the hardware development from School of Electrical Engineering and Informatics ITB.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICEEI47359.2019.8988821[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]