Enter your keyword

2-s2.0-85085866108

[vc_empty_space][vc_empty_space]

Design of Pattern Recognition Application of Partial Discharge Signals Using Artificial Neural Networks

Lumba L.S.a, Khayam U.a, Maulana R.a

a School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IEEE.This paper presents the experimental result of detecting Partial Discharge (PD) for three different sensors and an application for recognizing PD type using Artificial Neural Networks (ANN). Nowadays, Artificial Intelligence is being used by various types of researchers, included in the field of Electrical Power Engineering. Therefore, the authors utilize one of its branch for doing a better diagnosis in High Voltage Equipment which is Artificial Neural Networks. This method was chosen because it has been proven to have a high level of accuracy on pattern recognition. Database compilation is done by taking PD data with PD sources in the form of corona and PD in oil insulation at three different voltage levels. The recognition of PD patterns is done by looking at the PD signal phase pattern while the PD signal assessment is done by looking at the maximum amplitude for both positive and negative PD and also the number of PD appearances in each cycle. This important information will be used in the process of making ANN, then the network will be used for pattern recognition and assessment of PD signals in the application made.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Database compilation,Different voltages,Electrical power engineering,High-voltage equipments,Maximum amplitude,Oil insulations,Partial discharge signal,Signal phase[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Artificial Neural Networks,nPD,Partial Discharge,phase pattern,qPD[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICEEI47359.2019.8988895[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]