[vc_empty_space][vc_empty_space]
Suppression of backward scattering using chain of high index dielectric nanospheres
Natanael M.a, Iskandar A.A.a
a Physics of Magnetism and Photonics Research Division, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.High refractive index dielectric materials have been widely studied in nanophotonics as a substitude for plasmonic materials due to its low dissipative losses and its ability to generate magnetic moments resonance in visible light spectrum. The dimension, geometry, and materials used will affect the excited multipole moments, this can in turn be used to tailor the scattered field. The aim of this study is to design a structure composed of silicon nanospheres arranged in chain-like configuration which can suppress backward scattering. Analytical Mie theory formulation is employed to calculate the scattering field. Results show that by increasing the gap distance between nanospheres at certain incident wavelength, forward-to-backward scattering ratio is increased until it reaches optimum value. Further increase will enhance backward scattering due to higher multipole excitation.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Backward scattering,Chain-like configurations,Dissipative loss,High refractive index,Incident wavelength,Multipole moments,Scattered field,Scattering field[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work is supported by Program Penelitian, Pengabdian Kepada Masyarakat dan Inovasi (P3MI), Institut Teknologi Bandung (1000F/I1.C01/PL/2019).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/1552/1/012006[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]