Enter your keyword

2-s2.0-85086563804

[vc_empty_space][vc_empty_space]

PWDFT.jl: A Julia package for electronic structure calculation using density functional theory and plane wave basis

Fathurrahman F.a, Agusta M.K.a, Saputro A.G.a, Dipojono H.K.a

a Department of Engineering of Physics, Bandung Institute of Technology, West Java, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 Elsevier B.V.We describe the implementation of PWDFT.jl, a package for electronic structure calculations written in Julia programming language using plane wave basis set and pseudopotentials. In this package, a typical Kohn–Sham density functional theory (KSDFT) is divided into three steps: initializing the molecular or crystalline structure, constructing the Kohn–Sham Hamiltonian, and solving the Kohn–Sham problem using self-consistent field (SCF) calculation. To facilitate various tasks involved in these steps, we provide several custom data types which are transparent and easy to be modified. Basic operations such as wave function orthogonalization, action of kinetic and potential operators to wave functions and iterative diagonalization of Hamiltonian have been implemented in pure Julia. Several algorithms to solve the Kohn–Sham problems such as self-consistent field and direct energy minimization have also been implemented in PWDFT.jl. To assess the validity of our implementation, we present the results of total energy calculations against the well-established ABINIT package. We also show how one can use PWDFT.jl to write a simple self-consistent field implementation. Program summary: Program Title: PWDFT.jl CPC Library link to program files: http://dx.doi.org/10.17632/b87xzmzm2z.1 Licensing provisions: GPL-v2 Programming language: Julia Nature of problem: Electronic structure of interacting electrons in material Solution method: Kohn–Sham density functional theory, using plane wave basis set and pseudopotentials Additional comments including restrictions and unusual features: Due to the precompilation step, the program may appear to be slow at the first call. Parallelization is not yet considered.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Crystalline structure,Electronic structure calculations,Energy minimization,Interacting electrons,Orthogonalization,Plane-wave basis set,Self-consistent field,Total energy calculation[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Density functional theory,Julia programming language,Pseudopotential plane wave method[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.cpc.2020.107372[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]