Enter your keyword

2-s2.0-85086707289

[vc_empty_space][vc_empty_space]

Improving strength of porous asphalt: A nano material experimental approach

Pradoto R.a, Puri E.a, Hadinata T.a, Rahman Q.D.a

a FTSL Institut Teknologi Bandung, Department of Civil Engineering, Bandung, 40181, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.Porous asphalt (PA) has potential to be utilized in many urban area in Indonesia which often faced high street runoff during rainy season. PA is an environmentally friendly tool for stormwater management. A typical porous pavement has an open-graded surface over an underlying stone recharge bed. The water drains through the porous asphalt and into the stone bed, then, slowly, infiltrates into the soil. However, despite of the benefit of porous asphalt, there is still weaknesses, such as less of service life than dense-graded asphalt due to its lower durability and strength. In order to improve durability and strength of PA, this study investigates the effect of using fly ash (FA) class F in porous asphalt (PA) mixture as replacement of common filler. Since asphalt pen 60/70 is mainly binder material in Indonesia, it is used as the default for all samples in this experiment. The optimum bitumen content (OBC) was determined for all the mix by Marshall mix design. In view of the nanomaterial approach, samples were then prepared for the same optimum bitumen content (5.85%) by using Bina-Marga’s PA standard in control mix as well as natural FA and treated FA as alternative filler in modified mixes. Treated FA itself has been milled using transversal ball mill machine for 3 to 6 hours. Experimental results indicated higher stability value and reduction of permeability with the same OBC for the mixture having treated FA as filler content in comparison with standard mix and natural FA mix. It is proposed that additional finer material of treated Fly ash as alternative filler added into asphalt mixture resulted in improvement strength. In order to do that, the required amount of treated Fly ash should be less than 200 grams.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1757-899X/849/1/012044[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]