[vc_empty_space][vc_empty_space]
On cycle-irregularity strength of ladders and fan graphs
Ashraf F.a, Baca M.b, Semanicova-Fenovcikova A.b, Saputro S.W.c
a Abdus Salam School of Mathematical Sciences, GC University, Lahore, Pakistan
b Department of Applied Mathematics and Informatics, Technical University, Košice, Slovakia
c Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 Indonesian Combinatorics Society.A simple graph G = (V (G);E(G) admits an H-covering if every edge in E(G) belongs to at least one subgraph of G isomorphic to a given graph H. A total k-labeling ϕ: V (G) ∪ E(G) → [1, 2,…, k] is called to be an H-irregular total k-labeling of the graphG admitting an H-covering if for every two different subgraphs H’ and H” isomorphic to H there is wtϕ(H’) ≠ wtϕ(H”), where. The total H-irregularity strength of a graph G, denoted by ths(G, H), is the smallest integer k such that G has an H-irregular total k-labeling. In this paper we determine the exact value of the cycle-irregularity strength of ladders and fan graphs.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Fan graph,Ladder,Total cycle-irregularity strength,Total H-irregular labeling[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The research for this article was supported by APVV-15-0116, by VEGA 1/0233/18 and by Riset P3MI 1016/I1.C01/PL/2017.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.5614/EJGTA.2020.8.1.13[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]