[vc_empty_space][vc_empty_space]
Porous Architecture Evaluation of Silk Fibroin Scaffold from Direct Dissolution Salt Leaching Method
Judawisastra H.a, Nugraha F.R.a, Wibowo U.A.a
a Faculty of Mechanical and Aerospace Engineering, Materials Science and Engineering Department, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimTissue engineering scaffold is used to facilitate and support cell/tissue growth. Fabrication of silk fibroin scaffold using newly developed direct dissolution salt leaching method is successfully done. This method significantly reduces the processing time compared to the traditional method. Cells attachment, cells growth, cells migration, and diffusion of nutrients and waste are affected by the architecture scaffold. In this study, 3D analysis on porous architecture evaluation of direct dissolution salt leaching scaffolds is conducted. Scaffolds are fabricated from different NaCl particle sizes of 158, 250, 378, and 503 μm at 12% w/v silk fibroin concentration. Scaffold architecture is evaluated using microcomputed tomography (micro-CT) method. Evaluation of scaffold architecture shows that the use of larger NaCl particle size increases the scaffold pore size. The relationship between scaffold pore size and scaffold porosity, scaffold wall thickness, pore interconnectivity, scaffold specific surface area is established, which is important for tissue formation.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Micro computed tomography (micro-CT),Pore interconnectivity,Porous architectures,Salt-leaching method,Salt-leaching scaffolds,Scaffold porosity,Tissue engineering scaffold,Tissue formation[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]micro-CT,porous architecture,salt leaching,scaffold[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1002/masy.201900187[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]