Enter your keyword

2-s2.0-85087094998

[vc_empty_space][vc_empty_space]

Modelling an indoor crowd monitoring system based on RSSI-based distance

Fuada S.a, Adiono T.b, Prasetiyoc, Islam H.W.S.d

a Program Studi Sistem Telekomunikasi, Universitas Pendidikan Indonesia, Bandung, Indonesia
b School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia
c School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
d Stream Intelligence Ltd., London, United Kingdom

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2013 The Science and Information (SAI) Organization.This paper reports a real-time localization algorithm system that has a main function to determine the location of devices accurately. The model can locate the smartphone position passively (which do not need a set on a smartphone) as long as the Wi-Fi is turned on. The algorithm uses Intersection Density, and the Nonlinear Least Square Algorithm (NLS) method that utilizes the Lavenberg-Marquart method. To minimize the localization error, Kalman Filter (KF) is used. The algorithm is computed under Matlab approach. The most obtained model will be implemented in this Wi-Fi tracker system using RSSI-based distance for indoor crowd monitoring. According to the experiment result, KF can improve Hit ratio of 81.15 %. Hit ratio is predicting results of a location that is less than 5 m from the actual area (location). It can be obtained from several RSSI scans, the calculation is as follows: the number of non-error results divided by the number of RSSI scans and multiplied by 100%.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Intersection density method,Kalman filter (KF),Nonlinear least square (NLS) method,RSSI-based distance,Wi-Fi tracker system[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]