[vc_empty_space][vc_empty_space]
A preliminary study on machine learning and google earth engine for mangrove mapping
Kamal M.a, Farda N.M.a, Jamaluddin I.a, Parela A.a, Wikantika K.b, Prasetyo L.B.c, Irawan B.d
a Department of Geographic Information Science, Faculty of Geography, Universitas Gadjah Mada Sekip Utara, Bulaksumur, Yogyakarta, 55281, Indonesia
b Remote Sensing and Geographical Information Sciences Research Group, Faculty of Earth Science and Technology, Bandung Institute of Technology, Bandung, 40132, Indonesia
c Department of Natural Resource Conservation and Ecotourism, Faculty of Forestry, IPB University, Kampus IPB Darmaga, Bogor, 16680, Indonesia
d Biology Study Program, Faculty of Science and Technology, Airlangga University, Surabaya, 60115, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 IOP Publishing Ltd. All rights reserved.The alarming rate of global mangrove forest degradation corroborates the need for providing fast, up-to-date and accurate mangrove maps. Conventional scene by scene image classification approach is inefficient and time consuming. The development of Google Earth Engine (GEE) provides a cloud platform to access and seamlessly process large amount of freely available satellite imagery. The GEE also provides a set of the state-of-the-art classifiers for pixel-based classification that can be used for mangrove mapping. This study is an initial effort which is aimed to combine machine learning and GEE for mapping mangrove extent. We used two Landsat 8 scenes over Agats and Timika Papua area as pilot images for this study; path 102 row 64 (2014/10/19) and path 103 row 63 (2013/05/16). The first image was used to develop local training areas for the machine learning classification, while the second one was used as a test image for GEE on the cloud. A total of 838 points samples were collected representing mangroves (244), non-mangroves (161), water bodies (311), and cloud (122) class. These training areas were used by support vector machine classifier in GEE to classify the first image. The classification result show mangrove objects could be efficiently delineated by this algorithm as confirmed by visual checking. This algorithm was then applied to the second image in GEE to check the consistency of the result. A simultaneous view of both classified images shows a corresponding pattern of mangrove forest, which mean the mangrove object has been consistently delineated by the algorithm.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Classification results,Machine learning classification,Mangrove mappings,Pixel based classifications,Scene image classifications,State of the art,Support vector machine classifiers,Visual checking[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1755-1315/500/1/012038[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]