[vc_empty_space][vc_empty_space]
Mn-doped NaFeO2 from a low purity-Fe precursor and its performance as cathode for Sodium-Ion Battery
Rahmawati F.a, Kusumaningtyas A.A.a, Saraswati T.E.a, Prasetyo A.b, Suendo V.c
a Research Group of Solid State Chemistry & Catalysis, Department of Chemistry, Sebelas Maret University, Surakarta, Indonesia
b Department of Chemistry, Faculty Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Malang, Indonesia
c Inorganic and Physical Chemistry Research Group, Faculty Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020, © 2020 Taylor & Francis Group, LLC.Research to produce Mn-doped NaFeO2 was conducted from a low purity Fe-precursor aims to check the reliability for the inexpensive-mass production of the compound. The NaFeO2 was prepared through the co-precipitation method from iron sand concentrate with Fe content of 86.72% consist of the hematite-ilmenite mixture. The reaction was conducted at 650 °C for 12 h under air argon atmosphere producing a mix of β-NaFeO2 and α-NaFeO2, which was then mixed with Mn2O3 to produce Na1-x[Fe1-xMnx]O2-δ (NFMO) at various x of 0.02; 0.05; and 0.07. The result shows that Mn doping changed the crystal structure from orthorhombic into a hexagonal, P63/mmc. FTIR spectra provides peaks attributed to Na-O, Na-Fe, Mn-O, and Fe-O. Voltammetry analysis to NFMO-0.02 and NFMO-0.05 provide peaks attributed to Na+/Na and Fe3+/Fe4+ redox reaction. Meanwhile, the NFMO-0.07 provides Na+/Na, Fe3+/Fe4+, and Mn3+/Mn2+. The NFMO-0.07 also shows the highest electrical conductivity of 1.372 x 10−4 Scm−1. A split cell test developed with NFMO-0.07 as cathode produced an initial specific capacity of 50.57 mAhg−1 and an initial discharge capacity of 36.29 mAhg−1 correlate to 71.70% Columbic efficiency.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]cathode material,low purity Fe-precursor,Mn-doped NaFeO2,Sodium-Ion Battery[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This research is a part of Hibah Penelitian Dasar 2019, contract number: 719/UN.27.21/PN/2019, funded by The Ministry of Research, Technology, and Higher Education, Republic of Indonesia.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1080/24701556.2020.1790003[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]