[vc_empty_space][vc_empty_space]
Staggered Conservative Scheme for Simulating the Emergence of a Jamiton in a Phantom Traffic Jam
Malvin N.a, Pudjaprasetya S.R.a
a Industrial and Financial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020, Springer Science+Business Media, LLC, part of Springer Nature.Traffic jams that appear without distinguishable reason is called phantom traffic jam. To study this phenomenon, macroscopic modelling using the second-order Payne-Whitham equation was adopted. In this article, the staggered conservative scheme applied on a staggered grid was implemented to solve the equation. Using this scheme, different behavior of a perturbed equilibrium solution was simulated; it might either decay or grow, depending on the critical threshold parameter. When unstable, a small perturbation was amplified into a local peak of high traffic density. This type of traveling wave is called a jamiton. On a circular road of a certain length and with a fixed number of vehicles, the growing process of these traveling jamiton waves was simulated. The shape and propagation speed of these numerical jamitons are shown to confirm the analytical formulas. A good understanding of this phenomenon may support decision-makers and engineers to determine the judicious selection of speed limits of a certain road section.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Analytical formulas,Conservative schemes,Critical threshold,Equilibrium solutions,Macroscopic modelling,Small perturbations,Traffic densities,Whitham equations[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Jamiton,Payne-Whitham equations,Phantom traffic jam,Staggered conservative scheme[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]Financial support from Institut Teknologi Bandung Research Grant with contract number 91j/I1.C01/PL/2019 is greatly acknowledged.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1007/s13177-020-00229-y[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]