Enter your keyword

2-s2.0-85088317201

[vc_empty_space][vc_empty_space]

The matrix Jacobson graph of fields

Humaira S.a, Astuti P.a, Muchtadi-Alamsyah I.a, Erfanian A.b

a Faculty of Mathematics and Natual Sciences, Bandung Institute of Technology, Bandung, Indonesia
b Department of Pure Mathematics and the Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, Mashhad, Iran

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.The notion of Jacobson graph and n-Array Jacobson graph of a commutative ring were introduced in 2012 and 2018, respectively, by Azimi et al and Ghayour et al. In this article we generalize them to matrix Jacobson graph. Let R be a commutative ring. The matrix Jacobson graph of a ring R, denoted (R), is defined as a graph with vertex set is the set of matrix of ring without the matrix of its Jacobson such that two distinct vertices A, B are adjacent if and only if 1-det(AtB) is not a unit of ring. In this article we study the matrix Jacobson graph where the underlying ring R is a finite field. Since any matrix of size m × n over a field F can be considered as a linear mapping from linear space Fm to Fn, we employ the structure of linear mappings on finite dimensional vector spaces to derive some properties of square and non square matrix Jacobson graph of fields, including their diameters.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]A-RINGS,Commutative ring,Finite dimensional vector spaces,Finite fields,Linear mapping,Linear spaces,Square matrices,Vertex set[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/1538/1/012008[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]