Enter your keyword

2-s2.0-85088449333

[vc_empty_space][vc_empty_space]

Nonlinear Schrödinger equations and generalized Heisenberg uncertainty principle from estimation schemes violating the principle of estimation independence

Budiyono A.a,b,c, Dipojono H.K.a

a Research Center for Nanoscience and Nanotechnology, Bandung Institute of Technology, Bandung, 40132, Indonesia
b Edelstein Center, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
c Kubus Computing and Research, Juwana, Pati, 59185, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 American Physical Society.One of the advantages of a reconstruction of quantum mechanics based on transparent physical axioms is that it may offer insight to naturally generalize quantum mechanics by relaxing the axioms. Here, we discuss possible extensions of quantum mechanics within a general epistemic framework based on an operational scheme of estimation of momentum given information on the conjugate positions under epistemic restriction. The epistemic restriction is parameterized by a global-nonseparable random variable on the order of Planck constant, an ontic extension to the separable classical phase-space variables. Within the estimation scheme, the canonical quantum laws are reconstructed for a specific estimator and estimation error. In the present work, keeping the Born’s quadratic law intact, we construct a class of nonlinear variants of Schrödinger equation and generalized Heisenberg uncertainty principle within the estimation scheme by assuming a more general class of estimation errors. The nonlinearity of the Schrödinger equation and the deviation from the Heisenberg uncertainty principle thus have a common transparent operational origin in terms of generalizations of estimation errors. We then argue that a broad class of nonlinearities and deviations from the Heisenberg uncertainty principle arise from estimation errors violating a plausible inferential-causality principle of estimation independence which is respected by the standard quantum mechanics. This result therefore constrains possible extensions of quantum mechanics and suggests directions to generalize quantum mechanics which comply with the principle of estimation independence.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Causality principle,Dinger equation,Estimation errors,Estimation schemes,General class,Heisenberg uncertainty principle,Operational schemes,Planck constants[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work is partially supported by the Ministry of Education and Culture, and the Ministry of Research and Technology of Republic of Indonesia, under the grant scheme “Penelitian Dasar Unggulan Perguruan Tinggi (PDUPT),” and the WCU Program managed by Institut Teknologi Bandung. It is also supported by the John Templeton Foundation (Project No. 43297). The opinions expressed in this publications do not necessarily reflect the views of the John Templeton Foundation. The Authors would like to thank the anonymous Referees for the constructive comments and recommendations, and Daniel Rohrlich, Katsuhiro Nakamura, and Husin Alatas for useful discussions.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1103/PhysRevA.102.012205[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]