Enter your keyword

2-s2.0-85088653999

[vc_empty_space][vc_empty_space]

Enhancing photon absorption and conductivity of ZnO film by Fe doping: Experimental and first-principle perspectives

Virdian A.a, Muhammady S.a, Naradipa M.A.b, Widita R.a, Rusydi A.b, Darma Y.a

a Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
b Singapore Synchrotron Light Source, National University of Singapore, 117603, Singapore

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 Elsevier Ltd and Techna Group S.r.l.We study the optical and conductivity properties of Fe-doped ZnO (ZnO:Fe) film. ZnO and ZnO:Fe films (0.6 at. % and 1.2 at. % Fe concentration) were deposited using direct-current-unbalanced magnetron sputtering at room temperature. The presence of Fe dopant enhances the photon absorption of ZnO. The I–V and spectroscopic ellipsometry characteristic show that the electrical and optical conductivity of ZnO:Fe is increased. The first-principle calculation confirms the changes in the optical properties and conductivity due to Fe 3d states. The results show the role of Fe doping in modifying the optical and conductivity properties of ZnO film.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Conductivity properties,Direct current,Fe doping,First principle calculations,First principles,Photon absorptions,Unbalanced magnetron sputtering,ZnO films[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Absorption,Conductivity,Semiconductor growth,Wide band gap semiconductors[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][{‘$’: ‘This work is partly supported by the Ministry of Research and Technology (MORT)/The National Agency for Research and Innovation (NARI) of the Republic of Indonesia 2020 and ITB 2019 research programs.’}, {‘$’: ‘This work is partly supported by the Ministry of Research and Technology (MORT) / The National Agency for Research and Innovation (NARI) of the Republic of Indonesia 2020 and ITB 2019 research programs.’}][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.ceramint.2020.07.188[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]