Enter your keyword

2-s2.0-85088677971

[vc_empty_space][vc_empty_space]

Causality analysis of Google trends and dengue incidence in Bandung, Indonesia with linkage of digital data modeling: Longitudinal observational study

Syamsuddin M.a, Fakhruddin M.a, Sahetapy-Engel J.T.M.a, Soewono E.a

a Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 Muhammad Syamsuddin, Muhammad Fakhruddin, Jane Theresa Marlen Sahetapy-Engel, Edy Soewono.Background: The popularity of dengue can be inferred from Google Trends that summarizes Google searches of related topics. Both the disease and its Google Trends have a similar source of causation in the dengue virus, leading us to hypothesize that dengue incidence and Google Trends results have a long-run equilibrium. Objective: This research aimed to investigate the properties of this long-run equilibrium in the hope of using the information derived from Google Trends for the early detection of upcoming dengue outbreaks. Methods: This research used the cointegration method to assess a long-run equilibrium between dengue incidence and Google Trends results. The long-run equilibrium was characterized by their linear combination that generated a stationary process. The Dickey-Fuller test was adopted to check the stationarity of the processes. An error correction model (ECM) was then adopted to measure deviations from the long-run equilibrium to examine the short-term and long-term effects. The resulting models were used to determine the Granger causality between the two processes. Additional information about the two processes was obtained by examining the impulse response function and variance decomposition. Results: The Dickey-Fuller test supported an implicit null hypothesis that the dengue incidence and Google Trends results are nonstationary processes (P=.01). A further test showed that the processes were cointegrated (P=.01), indicating that their particular linear combination is a stationary process. These results permitted us to construct ECMs. The model showed the direction of causality of the two processes, indicating that Google Trends results will Granger-cause dengue incidence (not in the reverse order). Conclusions: Various hypothesis testing results in this research concluded that Google Trends results can be used as an initial indicator of upcoming dengue outbreaks.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Dengue,Disease Outbreaks,Humans,Incidence,Indonesia,Longitudinal Studies,Social Media[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Dengue,Google trends,Granger causality,Infodemiology,Infoveillance,Vector error correction model[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]Part of this work was supported by the Indonesian RistekDikti Grant 2020. The second author gratefully acknowledges the financial support provided by the Indonesia Ministry of Research and Technology through the Pendidikan Magister menuju Doktor untuk Sarjana Unggul (PMDSU) Program.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.2196/17633[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]