Enter your keyword

2-s2.0-85088970239

[vc_empty_space][vc_empty_space]

Efficient utilization of dependency pattern and sequential covering for aspect extraction rule learning

Ruskanda F.Z.a, Widyantoro D.H.a, Purwarianti A.a

a School of Electrical Engineering and Informatics, Institut Teknologi Bandung Jalan Ganesha 10, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 Published by IRCS-ITB.The use of dependency rules for aspect extraction tasks in aspect-based sentiment analysis is a promising approach. One problem with this approach is incomplete rules. This paper presents an aspect extraction rule learning method that combines dependency rules with the Sequential Covering algorithm. Sequential Covering is known for its characteristics in constructing rules that increase positive examples covered and decrease negative ones. This property is vital to make sure that the rule set used has high performance, but not inevitably high coverage, which is a characteristic of the aspect extraction task. To test the new method, four datasets were used from four product domains and three baselines: Double Propagation, Aspectator, and a previous work by the authors. The results show that the proposed approach performed better than the three baseline methods for the F-measure metric, with the highest F-measure value at 0.633.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Aspect extraction,Aspect-based sentiment analysis,Dependency rule,Rule learning,Sequential covering[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This research was supported by a Doctoral Dissertation Research Grant from the Ministry of Research, Technology, and Higher Education Republic of Indonesia within the research project Utilization of Complex Feature and External Knowledge for Aspect-based Sentiment Analysis.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.5614/itbj.ict.res.appl.2020.14.1.4[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]