Enter your keyword

2-s2.0-85090178518

[vc_empty_space][vc_empty_space]

Physical–chemical crosslinked electrospun colocasia esculenta tuber protein–chitosan–poly (Ethylene oxide) nanofibers with antibacterial activity and cytocompatibility

Wardhani R.A.K.a, Asri L.A.T.W.a, Rachmawati H.a, Khairurrijal K.a, Purwasasmita B.S.a

a Advanced Materials Processing Group, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 Wardhani et al.Background: Electrospun nanofibers based on Colocasia esculenta tuber (CET) protein are considered as a promising material for wound dressing applications. However, the use of these nanofibers in aqueous conditions has poor stability. The present study was performed to obtain insights into the crosslinked electrospun CET’s protein–chitosan (CS)–poly(ethylene oxide) (PEO) nanofibers and to evaluate their potential for wound dressing applications. Methods: The electrospun nanofibers were crosslinked with glutaraldehyde (GA) vapor and heat treatment (HT) to enhance their physicochemical stability. The crosslinked nanofibers were characterized by protein profiles, morphology structures, thermal behavior, mechanical properties, and degradation behavior. Furthermore, the antibacterial properties and cytocom-patibility were analyzed by antibacterial assessment and cell proliferation. Results: The protein profiles of the electrospun CET’s protein–CS–PEO nanofibers before and after HT crosslinking contained one major bioactive protein with a molecular weight of 14.4 kDa. Scanning electron microscopy images of the crosslinked nanofibers indicated preservation of the structure after immersion in phosphate buffered saline. The crosslinked nanofibers resulted in higher ultimate tensile strength and lower ultimate strain compared to the non-crosslinked nanofibers. GA vapor crosslinking showed higher water stability compared to HT crosslinking. The in vitro antibacterial activity of the crosslinked nanofibers showed a stronger bacteriostatic effect on Staphylococcus aureus than on Escherichia coli. Human skin fibroblast cell proliferation on crosslinked GA vapor and HT nanofibers with 1% (w/v) CS and 2% (w/v) CET’s protein demonstrated the highest among all the other cross-linked nanofibers after seven days of cell culture. Cell proliferation and cell morphology results revealed that introducing higher CET’s protein concentration on crosslinked nanofi-bers could increase cell proliferation of the crosslinked nanofibers. Conclusion: These results are promising for the potential use of the crosslinked electrospun CET’s protein–CS–PEO nanofibers as bioactive wound dressing materials.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Animals,Anti-Bacterial Agents,Cell Proliferation,Cell Shape,Chitosan,Colocasia,Cross-Linking Reagents,Escherichia coli,Humans,Mice,Microbial Sensitivity Tests,Nanofibers,NIH 3T3 Cells,Plant Proteins,Plant Tubers,Polyethylene Glycols,Staphylococcus aureus,Stress, Mechanical,Temperature[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Chitosan,Colocasia esculenta,Crosslinking,Electrospun nanofibers,Poly (ethylene oxide),Wound dressing[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][{‘$’: ‘This work was supported by Indonesia Endowment Fund for Education (Lembaga Pengelola Dana Pendidikan-LPDP), Ministry of Finance Republic of Indonesia. K. Khairurrijal acknowledges financial support by Ministry of Research and Technology Republic of Indonesia under PTUPT Research Grant.’}, {‘$’: ‘This work was supported by Indonesia Endowment Fund for Education (Lembaga Pengelola Dana Pendidikan – LPDP), Ministry of Finance Republic of Indonesia. K. Khairurrijal acknowledges financial support by Ministry of Research and T echnology Republic of Indonesia under PTUPT Research Grant.’}][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.2147/IJN.S261483[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]