[vc_empty_space][vc_empty_space]
Metal-organic-framework febdc-derived fe3o4 for non-enzymatic electrochemical detection of glucose
Abrori S.A.a, Septiani N.L.W.a, Nugrahaa, Anshori I.a, Suyatmana, Suendo V.a, Yuliarto B.a
a Advanced Functional Materials Laboratory, Engineering Physics Department, Faculty of Industrial Technology, Bandung Institute of Technology, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 by the authors. Licensee MDPI, Basel, Switzerland.Present-day science indicates that developing sensors with excellent sensitivity and selectivity for detecting early signs of diseases is highly desirable. Electrochemical sensors offer a method for detecting diseases that are simpler, faster, and more accurate than conventional laboratory analysis methods. Primarily, exploiting non-noble-metal nanomaterials with excellent conductivity and large surface area is still an area of active research due to its highly sensitive and selective catalysts for electrochemical detection in enzyme-free sensors. In this research, we successfully fabricate Metal-Organic Framework (MOF) FeBDC-derived Fe3O4 for non-enzymatic electrochemical detection of glucose. FeBDC synthesis was carried out using the solvothermal method. FeCl2.4H2O and Benzene-1,4-dicarboxylic acid (H2BDC) are used as precursors to form FeBDC. The materials were further characterized utilizing X-ray Powder Diffraction (XRD), Scanning Electron Microscopy (SEM), and Fourier-Transform Infrared Spectroscopy (FTIR). The resulting MOF yields good crystallinity and micro-rod like morphology. Electrochemical properties were tested using Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) with a 0.1 M of Phosphate Buffer Saline (PBS pH 7.4) solution as the supporting electrolyte. The measurement results show the reduction and oxidation peaks in the CV curve of FeBDC, as well as Fe3O4. Pyrolysis of FeBDC to Fe3O4 increases the peak of oxidation and reduction currents. The Fe3O4 sample obtained has a sensitivity of 4.67 µA mM−1.cm−2, a linear range between 0.0 to 9.0 mM, and a glucose detection limit of 15.70 µM.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Differential pulse voltammetry,ELectrochemical detection,Enzyme-free sensors,Laboratory analysis,Oxidation and reduction,Phosphate buffer salines,Solvothermal method,Supporting electrolyte,Biosensing Techniques,Electrochemical Techniques,Electrodes,Glucose,Limit of Detection,Metal-Organic Frameworks[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Electrochemical,Fe3O4,FeBDC,Glucose,Non-enzymatic glucose[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][{‘$’: ‘Author Contributions: Conceptualization, B.Y. and N.; methodology, S.A.A.; validation, V.S.; formal analysis, S.A.A., N. and S.; investigation, S.A.; resources, B.Y.; writing—original draft preparation, S.A.; writing—review and editing, N.L.W.S.; supervision, I.A.; All authors have read and agreed to the published version of the manuscript Funding: This work is partially supported by the Ministry of Education and Culture and Ministry of Research and Technology under the grant scheme of the World Class University (WCU) Program managed by Institut Teknologi Bandung. The authors also acknowledge financial support from Ministry of Research and Technology of Republic of Indonesia under the grant scheme of the MIT-Indonesia Research Alliance (MIRA).’}, {‘$’: ‘Acknowledgments: The authors are thankful to the Advanced Functional Material (AFM) Laboratory, Engineering Physics, Bandung Institute of Technology, for the financial support to carry out this work. Authors also would like to acknowledge the support of the Research Center for Nanosciences and Nanotechnology, Bandung Institute of Technology, for providing their facilities.’}][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.3390/s20174891[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]