[vc_empty_space][vc_empty_space]
Numerical study and experimental validation of blastworthy structure using aluminum foam sandwich subjected to fragmented 8 kg TNT blast loading
Pratomo A.N.a, Santosa S.P.a,b, Gunawan L.a,b, Widagdo D.a, Putra I.S.a,b
a Lightweight Structures Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, 40132, Indonesia
b National Center for Sustainable Transportation Technology (NCSTT), 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 Elsevier LtdA blastworthy structure is defined as a structure that has the ability to deform with a controlled force and preserve sufficient residual space around the occupants to limit bodily injury during a blast impact incident. In this research, a blastworthy aluminum foam sandwich (AFS) structure that consisted of an occupant side plate (OSP), a struck side plate (SSP), and an aluminum foam (Al-foam) core were numerically and experimentally subjected to blast-fragmented loading. The explosion with high-pressure shock waves was produced by steel-covered TNT, creating a synergistic blast and fragment loading. The interaction between the blast-fragment loading and the AFS created a unique perforation pattern due to Monroe’s effect. The measured blastworthiness characteristics included structural integrity, acceleration, and reaction force. A numerical modeling strategy to analyze the blastworthiness performance of the AFS structure was developed to capture the dynamic responses and the damage mechanism. Two types of blast loading, namely load blast enhanced (LBE) and smooth particle hydrodynamic (SPH) blast loading, were utilized along with the Cockcroft-Latham damage modeling on the AFS. A blast experimental setup with a fix-clamped method was used to evaluate the blastworthy characteristics of the panel to acquire the central acceleration and reaction force histories. A two-step process of experimental validation was carried out. First, a pre-test system validation with a very low explosive blast using 60 gram of TNT was conducted on the sandwich specimen to ensure the data acquisition system’s functionality and to obtain comparable data for system validation. Second, a blast impact test using 8 kg of steel-covered TNT was carried out to validate the numerical modeling results. The results of the numerical analysis showed that the LBE model had good agreement with the test data for the small deformation blast impact loading with 60 gram TNT. For the large deformation blast impact loading with 8 kg TNT, the SPH models provided excellent agreement with the damage mode and dynamic responses, where the acceleration and the reaction force performances were both within 6.1% and 6.4% of the experimental validation, respectively. As for the structural performance of the AFS construction, it was observed that the sandwich panel met the structural integrity requirements. There were no cracks or fractures in the OSP. The SSP and Al-foam absorbed more than 98.3% of the blast impact energy, providing extra protection for the OSP. This research contributes to the dynamic structural-response and damage investigation of AFS subjected to fragmented 8 kg TNT blast loading.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Damage investigation,Data acquisition system,Dynamic structural response,Experimental validations,Integrity requirements,Perforation patterns,Smooth particle hydrodynamics,Structural performance[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Aluminum foam sandwich,Blast experimental setup,Blastworthy structure,Fragmented explosion,Steel-covered TNT[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][{‘$’: ‘This collaborative research was jointly conducted by Institut Teknologi Bandung (ITB) and PT PINDAD. The authors would like to thank the LPDP RISPRO Program for its funding under grant number PRJ-634/LPDP/2016 , and PT PINDAD for its continuous support. We would like to thank the Indonesian Ministry of Research, Technology and Higher Education for providing partial funding under the WCU Program managed by ITB, and for providing a scholarship and research assistantship under the Master-Doctor Scholarship Program (PMDSU). Thanks are due to LSTC for the courtesy of the academic license of LS-DYNA to the Lightweight Structure Research Group ITB.’}, {‘$’: ‘This collaborative research was jointly conducted by Institut Teknologi Bandung (ITB) and PT PINDAD. The authors would like to thank the LPDP RISPRO Program for its funding under grant number PRJ-634/LPDP/2016, and PT PINDAD for its continuous support. We would like to thank the Indonesian Ministry of Research, Technology and Higher Education for providing partial funding under the WCU Program managed by ITB, and for providing a scholarship and research assistantship under the Master-Doctor Scholarship Program (PMDSU). Thanks are due to LSTC for the courtesy of the academic license of LS-DYNA to the Lightweight Structure Research Group ITB.’}][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.ijimpeng.2020.103699[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]