Enter your keyword

2-s2.0-85090822060

[vc_empty_space][vc_empty_space]

Tunable Schottky barrier height of ZnO films by Cu doping

Nurfani E.a, Kesuma W.A.P.a, Lailani A.a, Anrokhi M.S.a, Kadja G.T.M.b, Rozana M.c, Sipahutar W.S.a, Arif M.F.a

a Department of Materials Engineering, Institut Teknologi Sumatera, Lampung, 35365, Indonesia
b Division of Inorganic and Physical Chemistry, Institut Teknologi Bandung, Bandung, 40132, Indonesia
c Research Unit for Clean Technology, Indonesian Institute of Sciences, Bandung, 40135, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 Published under licence by IOP Publishing Ltd.Understanding a mechanism behind photosensitivity in oxide materials is important to realize future photodetector devices. We have studied electrical properties of ZnO:Cu (0-2.5 at.%) films deposited by a spray technique. Here, Ag-ZnO-Ag planar configuration was used to study the Schottky barrier. Using current-voltage (I-V) characterization, a significant increment in the photocurrent is observed in all samples, indicating a photosensitivity behavior. The Schottky barrier is clearly observed in the doped sample. The Cu concentration of 1.5 at.% show the highest Schottky barrier height (0.8 eV), which may be originated from carrier trapping under dark and carrier de-trapping under ultraviolet radiation. Thus, our result is essential to improve the functionality of ZnO for photodetector applications.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Carrier trapping,Cu concentrations,Current voltage,Oxide materials,Planar configurations,Schottky barrier heights,Schottky barriers,Spray technique[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1755-1315/537/1/012038[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]