Enter your keyword

2-s2.0-85091021751

[vc_empty_space][vc_empty_space]

Attendance system using machine learning-based face detection for meeting room application

Muttaqin R.a, Nopendrib, Fuada S.c, Mulyana E.a

a Telematika, Sekolah Teknik Elektro dan Informatika, Institut Teknologi Bandung, Bandung, Indonesia
b School of Industrial and System Engineering, Universitas Telkom, Bandung, Indonesia
c Universitas Pendidikan Indonesia, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020, Science and Information Organization.In a modern meeting room, a smart system to make attendance quickly is mandatory. Most of the existing systems perform manual attendance, such as registration and fingerprint. Despite the fingerprint method can reject the Unknown person and give the grant access to the Known person, it will take time to register first a person one-by-one. Moreover, it is possible to create long queues for fingerprint checking before entering the meeting room. Machine learning, along with the Internet of Things (IoT) technology is the best solution; it offers many advantages when applied in the meeting rooms. Generally, the method used is to create a presence by detecting faces. In this paper, we present a facial recognition authentication based on machine learning technology for connection to the meeting rooms. Furthermore, specific website to display the detection result and data storage design testing is developed. The method uses 1) the Dlib library for deep learning purposes, 2) OpenCV for video camera processing, and 3) Face Recognition for Dlib processing. The proposed system allows placing the multiple cameras in a meeting room as needed. However, in this work, we only used one camera as the main system. Tests conducted include identification of one Known person, identification of one Unknown person, identification of two people, and three people. The parameter to be focused is the required time in detecting the number of faces recorded by the camera. The results reveal that the face can be recognized or not recognized, then it will be displayed on the website.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Attendance,Detection,Face,IoT,Meeting room[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.14569/IJACSA.2020.0110837[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]