Enter your keyword

2-s2.0-85091790952

[vc_empty_space][vc_empty_space]

Classification of adeno carcinoma, high squamous intraephithelial lesion, and squamous cell carcinoma in Pap smear images based on extreme learning machine

Suksmono A.B.a, Rulaningtyas R.b, Triyana K.c, Sitanggang I.S.d, Rahaju A.S.b,e, Kusumastuti E.H.b,e, Nabila A.N.L.b, Maharani R.N.b, Ismayanto D.F.a, Katherineb, Winarnob, Putra A.P.b

a School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
b Biomedical Engineering, Department of Physics, Universitas Airlangga, Surabaya, Indonesia
c Department of Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia
d Departement of Computer Science, IPB University, Bogor, Indonesia
e Dr. Soetomo Academic Hospital, Surabaya, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 Informa UK Limited, trading as Taylor & Francis Group.Cervical cancer is a malignant tumour that attacks the female genital area originating from epithelial metaplasia in the squamous protocol junction area. One method of diagnosis of cervical cancer is to do a Pap smear examination by taking a cervical cell smear from the woman’s cervix and observing its cell development. However, examination of cervical cancer from Pap smear results usually takes a long time. This is because medical practitioners still rely on visual observations in the analysis of the results of Pap smear so that the results are subjective. Therefore, we need a programme that can help the classification process in establishing a diagnosis of cervical cancer with high accuracy results. In this study, a cervical cancer classification program was developed using a combination of the Grey Level Co-occurrence Matrix (GLCM) and Extreme Learning Machine (ELM) methods. There are three classes of cervical cell images classified, namely adenocarcinoma, High Squamous Intraepithelial Lesion (HSIL) and Squamous Cell Carcinoma (SCC). From the results of the training program obtained an accuracy 100% and from the testing program obtained an accuracy of 80%.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cervical cancer,extreme learning machine,GLCM[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][{‘$’: ‘This work was supported by the Universitas Airlangga [No.681/UN3/2019]. The authors would like to thank Indonesian Collaboration Research-World Class University, Republic of Indonesia for the research grant (Contract No. 0854/IT3.L1/PN/2019).’}, {‘$’: ‘The authors would like to thank Indonesian Collaboration Research-World Class University, Republic of Indonesia for the research grant (Contract No. 0854/IT3.L1/PN/2019).’}][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1080/21681163.2020.1817793[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]