[vc_empty_space][vc_empty_space]
Metaheuristics for the multi-task simultaneous supervision dual resource-constrained scheduling problem
Akbar M.b, Irohara T.
a Green Science and Engineering Division, Faculty of Science and Technology, Sophia University, 7-1 Kioi-Cho, Chiyoda-Ku, Tokyo, 102-8554, Japan
b Department of Industrial Engineering, Bandung Institute of Technology, Jl. Ganesha No. 10, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 Elsevier LtdThis comprehensive study develops advantageous optimization methods to solve a nascent problem, namely multi-task simultaneous supervision dual resource-constrained (MTSSDRC) scheduling. MTSSDRC is a complex problem that deals with machine assignment, job sequencing, operator allocation, and task sequencing. Setup and unloading must be scheduled to operators, and they are allowed to leave machines while processing jobs. Earlier research on MTSSDRC developed a permutation-based genetic algorithm (PGA) with a specific decoding scheme, namely DSE, to solve the problem. Many previous studies succeed in solving scheduling problems by modifying well-known metaheuristic techniques. Therefore, we are inspired by this to explore further modifications to particular metaheuristics. The first contribution of the present study lies in the development of new decoding schemes that can perform better than the existing option. Five new decoding schemes are considered. Two of those schemes, namely DS2 and DS4, perform significantly better than DSE, reaching 6% relative deviation. DS4 is superior in terms of solution quality, but DS2 can run eight times faster. Another contribution is the development of six modified metaheuristics that are implemented for the MTSSDRC problem: tabu search, simulated annealing, particle swarm optimization, bees algorithm (BA), artificial bee colony, and grey wolf optimization. The performance of these metaheuristics is compared with that of the PGA. The results show that the PGA and BA are consistently superior for medium- and large-sized problems. The BA is more promising in terms of solution quality, but the PGA is faster.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Artificial bee colonies,Dual resource constrained,Machine assignment,Meta-heuristic techniques,Optimization method,Permutation-based genetic algorithms,Relative deviations,Scheduling problem[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Bees algorithm,Decoding schemes,Metaheuristics,MTSSDRC,Permutation-based genetic algorithm[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The first author would like to acknowledge financial support from the Hitachi Global Foundation, Japan in the form of a scholarship for enrollment in the doctoral program at Sophia University, Japan.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.engappai.2020.104004[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]