Enter your keyword

2-s2.0-85092468554

[vc_empty_space][vc_empty_space]

Accuracy improvement of RSSI-based distance localization using unscented kalman filter (UKF) algorithm for wi-fi tracking application

Fuada S.a, Adiono T.b, Prasetiyoc

a Universitas Pendidikan Indonesia, Bandung, Indonesia
b Institut Teknologi Bandung, Bandung, Indonesia
c Korea Advanced Institute of Science and Technology, Daejeon, South Korea

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2020 by the authors.In this report, we perform the digital filter computation using Matlab for Wi-Fi tracking application. This work motivates to improve the accuracy of filter algorithm in the RSSI-based distance localization system. There are several aspects that we can improve, e.g., in the Filter part and Path-loss model. But, in this work, we focus on filter part; Unscented Kalman Filter (UKF) is implemented to replace linear Kalman Filter (KF), which is used in previous work. Based on the performance comparison, UKF has 90% hit ratio while linear KF has only 81.15 % hit ratio. We found that UKF can handle the noise in RSSI. Further work, the UKF algorithm is then embedded on the server system.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]RSSI-based distance localization,Unscented kalman filter (UKF),Wi-fi tracking system[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.3991/ijim.v14i16.14077[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]